Exercise 29

Explain, in terms of linear approximations or differentials, why the approximation is reasonable.

$$
\sec 0.08 \approx 1
$$

Solution

Compute the derivative of $y=\sec x$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(\sec x) \\
& =\sec x \tan x
\end{aligned}
$$

Consequently, the differential of $y=\sec x$ is

$$
d y=\sec x \tan x d x
$$

In order to estimate sec 0.08 , set $x=0$ and $d x=0.08$.

$$
d y=\sec 0 \tan 0(0.08)=0
$$

Note that $d y$ here is the vertical distance from the function's actual value at $x=0$ to the linear approximation's value at $x=0.08$.

$$
\sec 0.08 \approx \sec 0+0=1
$$

